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It is unlikely that a dissipative reaction-diffusion system exhibits static domains composed of different
pattern elements. So far as we know, there is only one exception in the energy conserving system: the
generalized Swift-Hohenberg �GSH� system �M’F. Hilali et al., Phys. Rev. E 51, 2049 �1995��. Our paper
reports that both a spot-domain and a line-domain coexist in a dissipative reaction-diffusion system with the
reversible Gray-Scott dynamics. The system has the features that a local perturbation induces the self-
rearrangement of the pattern elements and/or self-replication of spots. These features and controllability of the
pattern are different from those in the GSH system.
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Pattern formations have been studied for many years as
typical phenomena in dissipative systems. Among many
types of patterns, typical ones are spatiotemporal patterns
such as spirals �1� and target patterns �2�, and static Turing
patterns �3–7�. Turing patterns also have a rich variety typi-
fied by spots and lines in a two-dimensional �2D� system
�3–5�, and lamellae and gyroid structure in a three-
dimensional �3D� system �6,7�.

Concerning a system that is governed by the free energy
function, on the other hand, it is filled with one kind of
pattern elements such as a spot or a line. This nature seems
to be an attribute of the system that asymptotically reaches to
thermodynamic equilibrium; Nonomura and Ohta showed
mathematically and numerically that the final state of an A-B
block copolymer system is filled with one of two pattern
elements even if both exist at the beginning �3�. So far as we
know, there is only one exception which is known as a gen-
eralized Swift-Hohenberg �GSH� system, where the final
static pattern may be covered by the two stable pattern ele-
ments �i.e., two types of domains� �4�.

Similarly, most dissipative reaction-diffusion systems are
filled with only one kind of pattern element. In fact, Ermen-
trout proved mathematically that a reaction-diffusion system
cannot show bistability �spots and lines� when the system
size is as small as one wavelength of the Turing pattern �8�.
Even if a system is large enough and initially has two kinds
of pattern elements, one of them shall be dominant at the end
and the other appears just as defects �5�. Therefore it has
been thought unlikely that a reaction-diffusion system sup-
ports more than two domains composed of different pattern
elements at the same time. In nature, however, we can ob-
serve a variety of coexisting patterns on the skin of fish and
animals. Such patterns can be reproduced numerically in an
appropriate reaction-diffusion system if spatial inhomogene-
ity is introduced through the bifurcation parameter �9�. Thus
coexisting patterns were demonstrated experimentally as
well as numerically in a system with a ramp �10,11�.

The main goal of this paper is to show that spots and lines
can coexist in a dissipative reaction-diffusion system. This
work stands on the reversible Gray-Scott �rGS� model
�12,13�, which is a variant of the Gray-Scott �GS� model by

Pearson �5�. The difference is the existence of the backward
reactions, which is introduced in order to calculate the en-
tropy production in pattern formation processes �12�. Similar
to the GS model, the rGS model shows various patterns
when the rate constants of the backward reactions are suffi-
ciently small �13�. On the other hand, any patterns finally
become static for any value of parameters when the rate con-
stants of the backward reactions are large enough �13�.
Therefore various static patterns can be examined in terms of
the entropy production by using the rGS model.

As discussed below, implementation of a coexisting pat-
tern in this system is associated with the autonomous control
of the distance among the pattern elements �i.e., wave num-
ber� against local perturbations. The behavior and stability of
the coexisting pattern is brought about by the interaction
between the pattern elements. So far, the interaction between
spots has been studied in many reaction-diffusion systems
�10–12�, and the mathematic basis of their repulsive nature is
revealed �11�. To the authors knowledge, however, the inter-
action between a spot and a line, and between lines as well,
has not been reported yet. Thus we investigate to clarify the
importance of their repulsive nature for the self-
rearrangement of pattern elements and the stability of the
coexisting pattern.

The reversible Gray-Scott �rGS� model consists of three
variables: U, V, and P. The set of the reaction-diffusion
equations of this model is

�U

�t
= − UV2 + f�1 − U� + krV

3 + DU�2U ,

�V

�t
= UV2 − �f + k�V − krV

3 + krP + DV�2V ,

�P

�t
= kV − krP − fP + DP�2P , �1�

where f is the flow rate; k and kr are the forward and the
backward reaction rate constants, respectively. Here we as-
sume the same rate constant kr for all backward reactions.
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The diffusion coefficients of U, V, and P are given as DU, DV,
and DP, respectively, and are set to be DU=2.0�10−5, DV
=1.0�10−5, and DP=1.0�10−6.

This rGS model distributed in a 2D reaction-diffusion sys-
tem is calculated under periodic boundary conditions. The
horizontal and the vertical direction are represented by x and
y, respectively. The resolution of time is dt=0.25, and that of
space is dr �=dx=dy�=0.005. The system size is 512�512
in dr unit. The finite difference method is applied to the
diffusion terms, and integration is conducted by the third
Runge-Kutta method.

A typical pattern that has two pattern elements is shown in
Fig. 1�d�. This pattern appears through the following process.
First, a stable stripe pattern composed of 16 straight lines is
prepared �Fig. 1�a��. None of these lines have open ends
�tips� because of periodic boundary conditions. At the begin-
ning, a circular subarea of the system is perturbed �Fig. 1�b��
by changing the values of U, V, and P to those of a stable
steady state of the reaction �1.0, 0.0, and 0.0, respectively�.
The six lines are cut by this perturbation to get open ends.
Then, deformation of pattern occurs spontaneously. The per-
turbed lines are gradually fragmented into spots from the
open ends �Fig. 1�c��. As a result, all of the lines with open
ends turn into spots. In spite of vacant space existing nearby,
these spots do not self-replicate but rearrange their locations
by themselves in an almost hexagonal alignment with some
defects. In the course of this rearrangement, the average dis-
tance between spots reaches 35.73 �in dr unit hereafter� �Fig.
1�d��, whereas the distance between nonperturbed lines in-
creases from 32 to 33.67 �measured at x=256�. The average
distance between the line and the spots slightly increases to
be 32.75. In this way, the distances between the pattern ele-

ments increase spontaneously after perturbation.
Further perturbation gives a hint for the mechanism of the

rearrangement process �Figs. 1�d�–1�f��. At the beginning, a
half of the domain filled with spots in Fig. 1�d� is perturbed
as before. Then the number of spots is reduced to 44 from 81
�Fig. 1�e��. Again, rearrangement of pattern occurs spontane-
ously; the spots do not self-replicate nor disappear, but rear-
range their hexagonal alignment by themselves. Concomi-
tantly, the lines move apart from each other, and finally the
pattern becomes stable �Fig. 1�f��. The three average dis-
tances between the spots, the lines, and the spot and the line
are 40.41, 40.0, and 39.19, respectively, again in dr unit.
Thus the average distances between the pattern elements be-
come larger than those in the initial pattern in Fig. 1�d�.

For the coexisting pattern to be implemented, both lines
and spots must be realized stably under the same parameter
conditions. In order to know how the stabilities and the be-
haviors of spots and lines depend on the parameter k, we
carry out numerical calculations to observe the time evolu-
tion of pattern elements in the following three cases: a single
spot, a line without tips �a loop�, and a finite line with tips
�Fig. 2; �a1�, �b1�, and �c1�, respectively�. A single spot is
stable if 0.081�k�0.0915, and a loop is stable if 0.0795
�k�0.0825. Notice that there exists a bistable region
�0.081�k�0.0825� where both a single spot and a loop are
stable. On the other hand, a finite line is unstable in this
bistable region, and the line turns into the stable spots ��c3�

a b

c d

e f

FIG. 1. A pattern formation when f =0.04, k=0.082. The gray
scale exhibits the concentration of U �0.0 �black� to 1.0 �white��. �a�
The pattern before the system is perturbed. �b� The initial pattern
�t=0.0�. A circular region is perturbed to be the stable point
�U ,V , P�= �1.0,0.0,0.0�. The diameter of the circle is 200 in dr
unit. �c� The pattern in progress �t=1500.0�. The disconnected line
turns into spots. �d� The final pattern �t=580 000.0�. �e� The initial
pattern in another simulation �t=0.0�. The right half region of the
spot domain is perturbed into the stable point. �f� The final pattern
developed from �e� �t=1 850 000.0�.

a1 a2 a3

b1 b2 b3

c1 c2 c3

FIG. 2. �a1�–�a3� Examples of the pattern development from a
single spot. �a1� An example of the initial pattern �k=0.082, t=0.0�.
�a2� The pattern in progress. The pattern extends to the vacant re-
gion radialy �k=0.077, t=10 000.0�. �a3� Another example of pat-
tern in progress. The spots self-replicate repeatedly �k=0.08,
t=21 000.0�. �b1�–�b3� Examples of the pattern development from a
single line without tips �a loop line�. �b1� An example of the initial
pattern �k=0.082, t=0.0�. �b2� The pattern in progress. The line
becomes winding �k=0.078, t=20 000.0�. �b3� Another example of
pattern in progress. The line is broken into spots �k=0.083,
t=20 000.0�. �c1�–�c3� Examples of the pattern development from a
single line with tips. �c1� An example of the initial pattern
�k=0.082, t=0.0�. �c2� The pattern in progress. The line starts to
extend �k=0.0795, t=16 000.0�. �c3� Another example of pattern in
progress. The line is broken into spots �k=0.084, t=1000.0�.
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in Fig. 2�. This explains why the spots appear sandwiched by
the lines �Fig. 1�d��; the loop is stable but becomes no more
stable once it gets open ends by perturbation, and the conse-
quent finite line turns into alternatively stable spots through
the sequential fragmentation.

When the parameter k is small, the isolated pattern ele-
ment may grow. Some examples of pattern-growing pro-
cesses are summarized in Fig. 2. For example, a single spot
expands radially to become a loop ��a2� in Fig. 2, 0.077
�k�0.0785�. If k is much larger, a spot grows to be a line
by extending its tips �not shown, 0.0785�k�0.0795�.
Therefore the coexisting pattern cannot be realized by the
perturbation applied in Fig. 1 because the spots change them-
selves into lines in these parameter regions. Further increase
of k �0.0795�k�0.081� results in the continuous self-
replication of spots ��a3� in Fig. 2�.

A loop grows to meander at 0.077�k�0.0795 ��2b� in
Fig. 2�, and the tips of a line extend at 0.077�k�0.081
��c2� in Fig. 2�. These behaviors mean that the pattern ele-
ments have a tendency to fill the vacant space. These patterns
grow dense until the mutual distance between the neighbor-
ing pattern elements becomes sufficiently small. Thus, even
though the coexisting pattern is realized, the distances be-
tween the pattern elements cannot be widened by such per-
turbation as in Fig. 1 in these parameter regions.

The behaviors of these patterns are simple when the pa-
rameter k is large. A single spot disappears if k is larger than
0.0915. Even a loop is fragmented to become spots
�0.0825�k�0.084� or disappears �0.084�k�. Therefore, no
line can be stable, and consequently, the coexisting pattern
cannot be realized when k�0.0825.

The above-mentioned parameter scans indicate that there
is a bistable region where both a spot and a line can be
stable. Then, we may expect the possibility for implementa-
tion of the coexisting pattern in this bistable region. Figure 3
shows the parameter region where a single spot is stable
�between the bold lines: region S� and the region where a
single line is stable �between the dotted lines: region L�.
Outside right of the right dotted line, a line becomes spots
�as in Fig. 2�b3�� or disappears. Thus we cannot expect any
coexisting patterns, as the line is not sable. Indeed, we ex-
amined but could not observe any coexisting patterns in this
parameter region.

On the other hand, both pattern elements are stable where
the regions S and L are superimposed �region ��. It is the
region where the coexisting pattern can be observed. How-
ever, in order to realize such coexisting patterns as in Figs.
1�d� and 1�f�, appropriate initial pattern should be given for
each set of parameters. For example, for the set of param-
eters f =0.04 and k=0.0825, the number of the lines in the
initial line pattern �something like Fig. 1�a�� should be re-
duced to be 12 �Fig. 4�b��. Otherwise, for example, the initial
pattern with 16 lines turns into all spots �Fig. 4�a��. This
result strongly suggests the importance of the density of pat-
tern elements for their stability and the coexisting pattern.

In the left side of the region S in Fig. 3, a spot becomes
either a line or self-replicated. If a spot can only self-
replicate, the coexisting pattern can be realized because the
morphology of the pattern element is preserved even after
the self-replication of spots is completed. Indeed, in the pa-

rameter regions � and � in Fig. 3, the spot can only self-
replicate and finally the coexisting pattern can be observed.
A typical example is given in Fig. 4�c�. The initial pattern for
this calculation is the same as that in Fig. 1�f�. Some of the
spots self-replicate and the number of the spots increases to
be 74. Then the spots rearrange themselves into an almost
hexagonal array, and the pattern becomes static. As a result,
the distance between the pattern elements becomes shorter
than that of the initial pattern. That is, in the final pattern, the
average distance between spots is 35.89; between lines:
34.89; and between spots and lines: 33.36 in dr unit. There-
fore, in this parameter region, we can say that the coexisting
pattern does not increase the distance between the pattern
elements against the pattern-erasing perturbation.
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FIG. 3. The phase diagram. A single spot is stable in the region
S that is enclosed by the bold line. A single line is stable in the
region L that is enclosed by the dotted line. In the superimposed
region of these two regions �region ��, the coexisting pattern is
realized. The coexisting pattern is realized also in the region � that
is enclosed by three lines: the bold line, the dashed line, and the
dotted line. In the region � that is enclosed by the dashed line and
the dotted line, the coexisting pattern is realized, too. The points
a–d show the parameter conditions for the calculations shown in
Fig. 4.

c d

a b

FIG. 4. �a� and �b� A pattern formation when f =0.04,
k=0.0825. �a� The pattern when the initial pattern has 16 straight
lines �t=10 000.0�. �b� The pattern when the initial pattern has 12
straight lines �t=130 000.0�. For the perturbation, see Fig. 1�b�. �c�
A stable pattern at f =0.04, k=0.0805, t=11 000.0; �d� A stable pat-
tern at f =0.04, k=0.079, t=30 000.0. The initial patterns in both
cases are the same as in Fig. 1�d�.
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Contrarily, the coexisting pattern cannot be realized in the
left side of the regions �, �, and �. Figure 4�d� shows an
example of the pattern formation in this region. In this cal-
culation, the initial pattern has the same configuration as that
of Fig. 1�f�. Some spots become lines and extend their tips.
Then the spots and the lines with tips are going to be mixed
in the domain of the spots, where the lines are slightly bend-
ing. Finally, the pattern becomes static with no spot domains.

As mentioned above, it seems that the interaction between
the pattern elements determines whether the coexisting pat-
tern can be realized or not. We therefore investigate the local
interaction between the pattern elements in the following
three cases for f =0.04: �i� a spot and another spot, �ii� a line
and another line, and �iii� a spot and a line.

�i� The system that has only two spots is calculated in the
parameter region where the single spot is stable. An example
is shown in Fig. 5�a� �f =0.04, k=0.082�. At the beginning,
the distance between the spots is 30 in dr unit �Fig. 5�a1��.
The spots start to move apart from each other, and the dis-
tance becomes 52 at t=1.0�105 �Fig. 5�a2��. Thus there is a
repulsive force between spots in this parameter region.

�ii� All the same as in the previous case, the loop lines get
away from each other. An example is shown in Fig. 5�b�
�f =0.04, k=0.082�; the distance between lines is initially 29
�Fig. 5�b1��, and becomes 48 at t=1.0�105 �Fig. 5�b2��.
This increase in the distance is observed in the parameter
region where the line without tips is stable �f =0.04, 0.0795
�k�0.0825�.

�iii� Now we examine the interaction between the spot
and the line in the bistable parameter region �f =0.04,
0.081�k�0.0825� where both the spot and the loop line
without tips are stable. In this case, the change in the loop
line depends on the distance from the spot. The loop line is
cut when the initial distance is sufficiently small. An ex-
ample is shown in the sequence in Fig. 5�c�. Initially, the

distance is set 22 �Fig. 5�c1��. After a while, the loop line is
cut and the tips appear �Fig. 5�c2��. As the finite line is un-
stable in this parameter region, it will turn into spots. Con-
trary, the loop line is not cut but coexists with the spot when
the initial distance is sufficiently large �Fig. 3�d��. At the
beginning, the distance between the spot and the loop line is
set at 30 �Fig. 5�d1��. Then the line remains stable, and the
spot moves apart from the line. At t=5.0�104, the distance
reaches 47 �Fig. 5�d2��. These results in Figs. 5�c� and 5�d�
suggest that the spot affects the line.

The influence of the spot to the line can be discussed
through the profile of the line. Figure 6�a� plots the minimum
values of U�x� along the line �f =0.04, k=0.082�. The profile
is almost flat when the system has only one straight line. On
the other hand, the profile has a peak at the nearest distance
to the spot when the system has both a line and a spot. The
time series of this peak are plotted in Fig. 6�b�. The line is

a1 a2 b1 b2

c1 c2 d1 d2

FIG. 5. �a1� and �a2� The behavior of the system that has only
two spots �f =0.04, k=0.082�. The size of the system �x�y� is
256�128 in dr unit. �a1� The initial pattern �t=0.0�. The distance
between the spots is 30. �a2� The pattern when t=100 000.0. The
distance increases to 52. �b1� and �b2� The behavior of the system
that has only two straight lines without tips �f =0.04, k=0.082�. The
size of the system �x�y� is 256�256. �b1� The initial pattern. The
distance between the lines is 29. �b2� The pattern when
t=100 000.0. The distance increases to 48. �c1� and �c2� The behav-
ior of the system that has one spot and one straight line without tips
�k=0.082�. �c1� The initial pattern. The distance between the spot
and the line is 22. �c2� The pattern in progress �t=500.0�. The line
is cut. �d1� and �d2� The behavior of the system that has one spot
and one straight line without tips �k=0.082�. �d1� The initial pat-
tern. The distance between the spot and the line is 30. �d2� The
pattern in progress. The spot moves apart from the line. The dis-
tance is 47 when t=50 000.0.
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FIG. 6. �a� The horizontal profiles of U along the bottom of the
line. The solid line shows the profile of the line when a spot exists
near the line. The initial distance between the spot and the line is 23
�in dr unit�. The profile at t=100.0 is plotted. The dashed line
shows the profile of the line when the system has only one straight
line. �b� The maximum U’s of the line on the vertical direction
�x=122� are plotted as a function of time. These values represent
the peaks like in Fig. 4�a�. The behavior of the line depends on the
initial distance between the spot and the line. If the distance is
smaller than 22, the peak increases monotonically. If the distance is
larger than 23, the peak increase at first and then it goes back to the
initial state.
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not cut if the initial distance is larger than 23 in dr unit. In
this case, the peak height increases at the beginning. After a
while the peak begins to decrease monotonically and con-
verges to the initial state by increasing the distance. This
behavior means that the line recovers its stability by chang-
ing the distance from the spot. In contrast, the line is cut
when the distance is smaller than 22. The peak height in-
creases monotonically even though the distance increases
with time. Therefore, in this case, the critical initial distance
whether the line will be cut or not should be between 22 and
23.

The results in Fig. 6 suggest that the profile of the line
reaches is identical to that of the isolated stable line when the
distance between the line and the spot is large enough. More-
over, the maximum value of these time series becomes lower
as the initial distance increases. It means that the influence of
the spot on the line becomes smaller as the distance in-
creases. Thus we can deduce that two pattern elements �spots
and lines� can coexist when the distances among the pattern
elements are sufficiently large. In other words, there exists
the critical distance between the pattern elements, above
which they can exist stably.

In all three cases, the pattern elements exhibit a repulsive
nature similar to that in other models �14–16�. This nature
causes the rearrangement of the pattern as shown in Fig. 1.
This repulsive nature brings about the coexisting pattern
even though the line tends to wind itself. Such an example is
found in the parameter region � in Fig. 3. As the self-
replication process of spots is faster than the winding process
of the line, the spots quickly fill the vacant region. As a
result, the spots push the lines to suppress the winding nature
of the line. However, the distances between the pattern ele-
ments will not become shorter than the critical value for the
line to be cut. Therefore the line domains are preserved and
coexist stably with the spot domains.

It is noteworthy that the coexisting pattern is realized in
the bistable region � and the region �� and �� in Fig. 3, and
that the characteristics of the coexisting pattern in these pa-
rameter regions are different from each other. In the regions
� and �, the spots self-replicate if there remains vacant
spaces or the distance between the pattern elements is suffi-
ciently large. In this case the pattern becomes static after the
pattern elements are adequately packed. Therefore the pat-

tern has both the upper and the lower limits of the distances.
This feature looks like that of the Turing instability �18� even
though the mechanisms of both pattern formations are quite
different. In the Turing instability, the effect of the diffusion
drives the system from a stable fixed point to an unstable
saddle point. This instability induces Turing patterns that
emerge from the initially homogeneous state �which corre-
sponds to a stable fixed point� by adding small white noise
with respect to space. Thus the wavelength in the Turing
instability is restricted to the bounded value that is deter-
mined by the reaction rates and the diffusion coefficients in
the system. In the present case, on the other hand, patterns
cannot emerge from such initial conditions but from the ini-
tial distribution of pattern elements or spatially inhomoge-
neous perturbation �13�. This difference �or limitation� in the
present model is originated from the self-replicating and re-
pulsive nature of pattern elements.

Contrarily, in the bistable region �, the pattern elements
cannot grow. Thus the pattern elements may only leave each
other to preserve their morphologies if there is a vacant
space. Therefore there is no upper limit of the distance be-
tween the pattern elements. This feature reminds us of the
Alder transition �17� in which the repulsive force among the
elements keep themselves apart from each other to result in
an equally spaced packing. The repulsive nature is different
from that of the Turing instability. This feature enables us to
control the number of spots and the distance between the
pattern elements; the number can be reduced and the distance
is increased with perturbations in the bistable region. In the
GSH system also, lines and spots coexist; however, the pat-
tern is pinned, and reconfiguration of the pattern does not
occur. Therefore such controllability of spots is the charac-
teristic attribute of the present system and cannot be ex-
pected in the GSH system. We thus summarize that the co-
existing pattern in the present rGS system is realized by the
nature of the self-arrangement of the pattern elements or by
the self-replication of the spots, or both.
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